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ABSTRACT 
Research in collective robotics is motivated mainly by the 
possibility of achieving an efficient solution to multi-objective 
navigation tasks when multiple robots are employed, instead of a 
single robot. Several approaches have already been tried in multi-
robot systems, but the bio-inspired ones are the most frequent. 
This paper proposes to augment an autonomous navigation system 
based on learning classifier systems for using in collective 
robotics, introducing an inter-robot communication mechanism 
inspired by ant stigmergy, with each robot acting independently 
and cooperatively. The navigation system has no innate basic 
behavior and all knowledge necessary to compose the decision-
making artifact is evolved as a function of the environmental 
feedback only, during navigation. Repulsive and/or attractive 
pheromone trails are produced by the robots along navigation, 
following very simple rules. Basically, each robot has to perform 
obstacle avoidance and target search, and the status of the 
pheromone level at the position currently occupied by each robot 
will influence the coordination of the two fundamental behaviors. 
Experiments are performed in simulation, with comparative 
results indicating that the presence of the pheromone trails is 
responsible for significant improvements in the capture rate and in 
the length of the route adopted by each robot. 

Categories and Subject Descriptors 

I.2.9 [Artificial Intelligence]: Robotics – autonomous vehicles; 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– multiagent systems, intelligent agents; 

General Terms 
Algorithms, Performance and Experimentation. 

Keywords 
Collective robotics, autonomous navigation, learning classifier 
systems and ant stigmergy. 

1. INTRODUCTION 
The problems related to autonomous robot navigation have shown 
to be very attractive for researchers of diverse areas because of 
their complexity and challenging issues. Before the last twenty 
years, most research efforts were concentrated on single robot 
systems. Just recently multi-robot systems and collective robotics 
are receiving a great deal of attention [2]. 

The reasons for this growth of interest are mainly related to 
limitations of single robots and advantages associated with multi-
robots applications. Several tasks, like transport of objects, may 
require the use of various robots. In other tasks, a single robot 
may solve them but not as well as a collection of robots would do, 
especially if they cooperate. 

Some approaches for collective robotics, possibly the most 
frequent, are the biologically inspired ones. Such approaches are 
based on social characteristics of insects and animals, mainly ants, 
bees and birds. The studies of ant societies, their structure and 
dynamics have provided a great deal of knowledge about how 
such simple insects living in such complex social organization are 
able to perform a plethora of tasks with high level of efficiency. 

The scientific knowledge about ants has inspired researchers to 
devise various robotic tasks mimicking ants’ behaviors. The work 
of Kube et al. [13] is a good example. They have modeled the 
multi-robot box-pushing task according to the behavior ants 
exhibit when transporting food and prey, and also explored the 
manner ants build their nests, called blind bulldozing. Based on 
ant brood sorting, the authors have developed strategies for 
collective robot clustering. 

Beyond the aforementioned social behaviors, there is one 
extensively explored and of special interest in this work, the 
stigmergy. It consists in a form of indirect communication among 
individual ants mediated by secretion of chemical substances, 
denoted pheromones, in the environment [6]. 

The pheromone operates as communication signals and can have 
several roles (e.g., alarm, recruitment, and so on). Some socially 
advanced species of ants may make use of up to 20 pheromone 
types, each one with a different purpose. A second basic aspect 
related to pheromones is the concentration, which is proportional 
to the relevance of such signals. For example, in the case of food 
transport, the pheromone trail concentration may indicate the 
amount and quality of the food source [5]. 
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The use of artificial pheromone trails in computational systems 
and algorithms has been very widespread. Some works have 
considered such inspiration for optimization [4][10] and 
clustering [1][14] problems. Among other works concerning 
collective robotics, Wagner and Bruckstein [16] developed an 
algorithm for cleaning a dirty area where multiple robots 
cooperated by leaving trails on the ground. Ding et al. [11] 
employed artificial pheromone as quantifiers of task difficulty, 
that is, the robots should try to carry out tasks and, after that, 
deposit an amount of pheromone proportional to the task 
difficulty. Harder tasks, associated to higher pheromone 
concentration, would attract more robots to cooperate with each 
other and solve them. 

This work is inserted into the context of bio-inspired collective 
robotics as an extension of previously published works associated 
with single robot navigation. Cazangi and Figueiredo [7], and 
Cazangi et al. [8] presented an autonomous navigation system 
(ANS) based on learning classifier systems [12] and evolutionary 
algorithms, with simulated scenarios and also employing real 
robots. In contrast with other approaches in the literature [11] 
[17], the previously cited ANS has no innate basic behaviors, 
such as collision avoidance, shortest path finding, etc. All 
knowledge necessary to compose the robot controller is evolved 
according to environmental feedback during navigation. 

The purpose here is the application of the previously developed 
ANS in multi-robot navigation problems, introducing a new 
mechanism for inter-robot communication based on ant 
stigmergy. The primary objectives are the same of the single robot 
case and are related to autonomous navigation. That is, starting 
with no initial knowledge and without external assistance, the 
robots must navigate through unknown environments 
accomplishing two conflicting tasks: obstacle avoidance and 
target seeking [3]. In such problems, the robots usually present a 
poor initial performance, since the learning phase will take place 
on-line. 

The robots will be able to mark regions of the environment with 
artificial pheromones, according to past experiences, assisting one 
another in a cooperative way with indirect communication. With 
the presence of pheromone trails, improvements are expected in 
accomplishing the navigation task. Beyond a higher effectiveness 
in avoiding collisions and capturing targets, the minimization of 
distances traveled between targets and also the mapping of the 
environment are taken as secondary objectives, being a 
consequence of the accumulated deposition of pheromone. 

The remainder of this paper is organized as follows. Section 2 
describes the characteristics of the robots. Section 3 presents the 
autonomous navigation system and introduces the pheromone trail 
mechanism. Section 4 outlines the experimental results already 
obtained, and concluding remarks are delineated in Section 5. 

2. THE ROBOT MODEL 
The virtual robots used in simulation in this work were modeled 
with the same characteristics of Khepera II [8] and will be 
detailed below. As Figure 1 shows, there are eight infrared 
sensors disposed around the robot, being six at the front and two 
in the hinder part. They are responsible for measuring the distance 
from obstacles and target direction and intensity. As the robot 
does not move backward, the navigation system will ignore, in the 

applications to be presented, the measurements of obstacle 
distance provided by the two rear sensors. One new sensor is 
introduced: it reads the type and concentration of artificial 
pheromone present in the current position of the robot. 

 
Figure 1. The organization of robot sensors. These sensors are 
responsible for measuring the distance to obstacles (proximity 

sensors) and targets (luminosity sensors). The pheromone 
sensor is not presented. 

Regarding actuators, the adjustment of direction defined by the 
navigation system can range from 15 degrees (clockwise) to −15 
degrees (counter-clockwise). There is also a new actuator that is 
responsible for depositing artificial pheromone in the 
environment. 
Although the standard Khepera II is not able to leave marks on 
the ground and sense them, inserting additional accessories may 
give rise to such functionalities. Some works have developed and 
applied physical mechanisms that make marks on the floor which, 
though not exactly based on pheromones, represent properly the 
role trails have in the simulations performed here. One simpler 
alternative is tracing lines on the ground with a pen or chalk. A 
more sophisticated way involves laying down solvent substances 
(thinner) that discolor the floor surface (i.e., a black paper) [15]. 

3. NAVIGATION SYSTEM AND 
COMMUNICATION MECHANISM 
The original autonomous navigation system presented in Cazangi 
and Figueiredo [7], and Cazangi et al. [8] was directed to robots 
operating in isolation. In this work, simple modifications were 
performed in the ANS, specifically related to the scheme of 
decision making. Both, the original and the new aspects involved 
in the communication mechanism will be described in the next 
sections. 

3.1 Autonomous Controller 
Each robot is controlled by an autonomous navigation system 
(ANS) that works based only on instantaneous stimuli captured 
from the environment and does not contain a priori knowledge. 
To accomplish the primary navigation objectives, the robot have 
to present different behaviors in time, sometimes searching for 
targets, sometimes avoiding obstacles. The nature of the behavior 
emerges as a consequence of the interaction of the robot with the 
environment. The proper behavior to be adopted during 
navigation cannot always be established in a straightforward 
manner in face of the frequent occurrence of conflicting 
situations. Therefore, the existence of a coordinating module 
tuned by a learning algorithm is required. 

The ANS is based on the learning classifier system (LCS) 
paradigm proposed by Holland [12], an evolutionary approach to 
synthesize adaptive inference mechanisms capable of operating in 
time-varying conditions. The LCS interacts with the environment 
by means of detectors and actuators. Detectors receive and encode 
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incoming messages from the environment. Actuators provide 
means to act on the environment, decoding and applying actions 
defined by the system. After acting, the system also receives an 
environmental feedback. 

A set of classifiers composes the LCS. They are 〈condition〉-
〈action〉 rules with an if–then inference mechanism. The 
antecedent and consequent parts of each classifier are usually 
binary strings. Each classifier has an associated strength that is 
related to its capability to act toward the achievement of 
predefined objectives. 

There are three sub-systems in a LCS: rule and message sub-
system, apportionment of credit sub-system and rule discovery 
sub-system. They interact, in brief words, as follows. When the 
detectors capture messages from the environment, they are sent to 
the rule and message sub-system. Then all the classifiers try to 
match its antecedent part with the environment message. Those 
classifiers with better matching take part in a competition process. 
Among them, the classifier that offers the highest bid (depending 
mainly on the classifier strength) wins and acts on the 
environment. The action causes an environmental feedback that is 
used by the apportionment of credit sub-system to readjust the 
strength of the winner classifier. Thereafter, the environment 
emits a message with its new current state that is received again 
by the rule and message sub-system. The process continues until 
an epoch of iterations is concluded. After that, the rule discovery 
sub-system runs aiming at producing new and improved 
classifiers. Usually, a genetic algorithm is responsible for the 
process of rule discovery, taking the individual strength as the 
fitness of each classifier. Detailed information about the original 
LCS can be found in Holland [12]. 

Due to functional purposes, the classifier system implemented in 
the ANS differs in some relevant aspects from Holland’s LCS. At 
first, each classifier has two distinct antecedent parts and two 
distinct consequent parts, instead of just one. Moreover, not all 
parts are composed of binary values. Integers are also used in the 
codification. When the classifiers compete to act on the 
environment, the winner is the one that presents the best matching 
with the received message. There is no bid and the classifier 
strength does not influence the competition process. The strength 
is only used for the rule discovery sub-system, when computing 
the fitness value. This sub-system can be triggered every time one 
of three possible events is detected during navigation: collision, 
target capture, or monotony (virtual event detected when the robot 
presents monotonous behavior). Furthermore, for each event there 
is a different evolutionary algorithm with specific fitness 
functions and procedures, producing a new generation of rules. 
The complete details of the whole system are described in the 
following sections. 

Returning to the description of the original autonomous 
navigation system, it can be said that it interacts with the 
environment by means of sensors and actuators, and it is arranged 
in four main components: population of rules, evaluation module, 
reproduction module and competition module (Figure 2). Notice 
that the actuators will determine the direction and speed of the 
robot at each navigation step. The population of rules (Section 
3.1.1) represents the knowledge base and evolves during the robot 
navigation. The competition module receives stimuli captured by 
target and obstacle sensors, performs a matching with 〈condition〉-

〈action〉 rules, and defines which one is going to act on the 
environment. This process is repeated every time a control action 
is required, forming a loop that is only interrupted to give rise to 
an evolutionary update of the population of rules, denoted here as 
the evolution phase. 

 
Figure 2. The main structure of the ANS. 

It is important to highlight that the evolution of the set of rules 
(knowledge base) will depend on the interactions with the 
environment, and that these interactions will be determined by the 
sequence of rules selected to provide the control action at each 
instant of time. 

3.1.1 Population of Rules 
As in the original LCS, each individual of the population is 
represented by 〈condition〉-〈action〉 rules, with a modus-ponens 
inference mechanism type. Each rule can be described by a list of 
attributes, called a chromosome. Each chromosome, shown in 
Figure 3, is composed of four vectors: obstacle distance (RO: 
vector of integers), target light intensity (RA: vector of integers), 
direction adjustment (RD: binary vector) and speed adjustment 
(RV: binary vector). Therefore, RO and RA comprise the 
antecedent part and contain, respectively, six and eight 
components. The former corresponds to the number of proximity 
sensors, and the latter to the number of luminosity sensors of the 
robot. The RD vector (consequent part) has nine components, 
with the five more significant bits indicating signal, and the four 
less significant bits being used to indicate an absolute value. 
Considering the signal bits, if most of them are zero, the signal is 
negative, otherwise the signal is positive. Regarding the RV 
vector, if most of them are zero, the robot speed should be 
reduced, otherwise it should be increased by a fixed amount.  

Several bits, together with a majority voting procedure, are 
adopted simply to provide a smooth transition between states in 
antagonism. The rules are initially constructed with totally 
random values in both antecedent and consequent parts.  

Obstacle Antecedent (RO)           Target Antecedent(RA) 

900 900 900 700 90 50  0 0 20 100 350 100 20 0

Direction Consequent (RD)           Speed Consequent(RV)

1 1 0 0 0 0 0 1 1  0 0 1 1 1

Figure 3. Example of a rule representation as a chromosome. The 
consequent parts determine a turn of −3º and an increase in speed. 

New Population

Population 

Evaluation

Competition 

Environment 

ActuatorsSensors

Reproduction 

Evolution 
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3.1.2 Competition Module 
At each robot movement, the obstacle and target sensors capture 
stimuli from the environment in the form of two vectors, EO and 
EA, respectively, sending them to the competition module. 

The other piece of information used in this module is gathered by 
the pheromone sensor for inter-robot communication. The factors 
CR and CA are introduced in Equation (1) and represent an 
innovative aspect of the proposal when compared with the 
original ANS [8]. Their role and what kind of association they 
have with the pheromone sensor will be explained in section 3.2. 

At this stage, all rules compete in a winner-takes-all process. The 
winner will be the rule that presents the best matching with EO 
and EA. The similarity of each rule r, S(r), is given by: 

        CA
MaxA

EA)r(RA
CR

MaxO
EO)r(RO

)r(S
−

+
−

=             (1) 

where MaxO and MaxA mean suitable values for normalization of 
the first and second terms of S(r), respectively, and ||⋅|| is the 
Euclidean norm. The consequent of the winner rule is then used to 
command the actuators. The RD consequent determines the 
adjustment in direction, and the RV consequent establishes the 
variation in speed for the next movement. The speed is always 
modified by a constant value. This way, the winner rule just 
indicates if the speed increases or decreases.  

3.1.3 Evolution 
The evolution process, responsible for evolving the population of 
rules, is composed of evaluation and reproduction modules. 
Evolution takes place every time one of the following events is 
detected: collision with an obstacle, capture of target and 
monotony. A monotony event is triggered if the robot does not 
capture a target for a long time, or if the sum of direction 
adjustments of previous iterations exceeds a predefined threshold 
(to stop situations when the robot is moving in circles, for 
example). The events that demand evolution of the population of 
rules have, each one, different objectives associated with specific 
evolution processes. These processes are depicted during the 
description of the evaluation and the reproduction modules. 

In collective robotics, several robots navigate in the environment 
and each one is an obstacle for the others. Thus, due to their size 
and limited sensorial capability, collisions between robots are 
frequent and may be caused by a large variety of events. So, two 
consecutive evolution processes tends to be separated by small 
intervals of time, with no chance of a proper evaluation of the 
current population of classifiers. Because of that, events of 
collision between robots tend to degenerate the population and 
therefore will not trigger evolution processes. 

3.1.3.1 Evaluation Module 
3.1.3.1.1 Collision 
The aim of evolution just after each collision event is to improve 
the skill for obstacle avoidance. Independent evaluations are 
performed, one for the antecedent of the rules, and another for the 
consequent part. The first one sorts the individuals according to 
their similarity to the instantaneous collision situation. Equation 
(1) is used here, where EO and EA are associated with the stimuli 
captured at the collision instant and CR=CA=1. In the consequent 
evaluation, instinctive reflex is considered for the robot, after each 

collision, and is given by T(r) in Equation (2). The idea is that the 
output proposed by the selected rule be altered by a fixed amount 
of 15, forcing the robot to point to a direction that tends to move 
the robot away from the obstacle. 

 
[ ]
[ ]





+

−
=

           otherwise. ,15)(

collision;left  if ,15)(
)(

d

d

rRD

rRD
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where [RD(r)]d is a real value that represents the adjustment in 
direction defined by the consequent part of rule r. 

It is clear that in risky situations (imminent collision) the robot 
should reduce its speed. Because of that, the consequent part of 
each rule, related to speed, is evaluated based on a Hamming 
distance between the RD(r) vector and a pattern vector that 
represents speed reduction (all elements with value one). 

3.1.3.1.2 Capture 
The evaluation procedure here is an analogue of the collision one, 
aiming at improving the capture efficiency. However, the 
evaluation of the antecedent part takes into account the 
instantaneous capture situation. The evaluation of D(r) 
(consequent RD) is given by the sensor that detected the capture, 
as follows: 

 ,)]([)( α−= drRDrD  (3) 

where [RD(r)]d is the same as in Equation (2), and α is the angle 
of the sensor that detected the event. 

When capturing a target, the operation of speed decreasing is also 
necessary (see the previous section), since it is generally related 
to a place where a task must be carried out, such as object 
collecting. So, the behavior is similar to the one associated with 
the collision case. 

3.1.3.1.3 Monotony 
The monotony events are characterized by the robot presenting 
navigation behaviors that do not produce collision or target 
capture events.  

At the beginning of the navigation experiment, with the rules 
being randomly generated, collision events are more frequent and 
imply intensive learning, as expected. Also, collision may not 
necessarily represent a risk of physical damage. A collision event 
can be characterized by the occurrence of a distance between the 
robot and an obstacle smaller then a threshold. 

So, the autonomous navigation system should avoid monotony in 
favor of target seeking, possibly increasing the probability of 
collision. Monotony is generally measured as a function of a 
predefined number of iterations. Thus, every time that monotony 
is detected, the whole set of rules that are being selected to 
provide the control action (for example, moving the robot 
consistently away from the target) will participate in the 
reproduction stage. The remaining rules are kept fixed. 

3.1.3.2 Reproduction Module 
3.1.3.2.1 Collision and Capture 
In the case of collision or capture evolution, the reproductive 
process is very similar. The only differences are the evaluation 
procedures performed before reproduction (details in evaluation 
module). Taking the evaluations as references, the next step is 
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parent selection in pairs (roulette wheel) and application of one-
point crossover. As a result, two offsprings are generated. Finally, 
they are mutated according to a small probability rate. 

It is important to remark that the amount of offspring produced 
per generation is only 10 % (procreation rate) of the population’s 
total size. This policy reduces the probability of occurring 
harmful interference among different kinds of sequential 
evolution processes. Concluding the offspring generation, new 
antecedent parts are randomly combined with new consequent 
parts, originating the final individuals that replace their 
corresponding parents. The remaining individuals are kept and the 
new generation is finally obtained. 

There is still an important mechanism that plays the role of 
keeping the population balance between individuals associated 
with obstacle avoidance and target capture behaviors. A balance 
mechanism is necessary because there is a natural trend toward 
the predominance of rules associated with target capturing, simply 
due to the consecutive occurrence of target captures. 

Table 1. Relation between the number of consecutive captures 
and the procreation rate. 

 
Rules associated with obstacle avoidance should not be discarded 
as a consequence of the reduction in the number of collisions. In 
order to implement the aforementioned balance, the procreation 
rate is decreased gradually, while consecutive captures take place. 
The progeny size is adjusted as described in Table 1. If a collision 
or monotony event is detected, the procreation rate is set 
immediately to 10%. Although the number of descendants 
generated in evolution processes can be reduced by the decrease 
of the procreation rate, the system never stops evolving. The 
smallest possible rate is 1%. Therefore, at least this amount of 
offspring rules will be always produced. 

3.1.3.2.2 Monotony 
Assuming that the evaluation module has sorted all rules, just 
those with worst evaluation are modified. The modification 
consists in removing those rules and inserting new random rules 
in replacement. This way, the rules responsible for monotonous 
behavior tend to be eliminated, thus suppressing the anomalous 
navigation behavior. 

3.2 Pheromone Trail Mechanism 
Considering that several robots navigate through the same 
environment, a mechanism for indirect communication among 
them has been designed. The mechanism is inspired by ants, more 
specifically by their pheromone trails, and will be described next. 

The robots are able to deposit artificial pheromone in any position 
of the environment in which they are navigating. There are two 
types of pheromone: repulsive and attractive. In the simulator, the 
repulsive one is represented by red dots and the attractive by blue 
dots. Both marks can have a stronger or lighter tint according to 
their concentration. 

The repulsive pheromone indicates a “dangerous region” from 
where the robot should run away. Such type of pheromone is 
deposited when the robot collides with obstacles. Immediately 

after the collision, the robot repeats backwardly the last 10 
movements, marking each discrete point of the trajectory 
(performed just before the collision) with repulsive pheromone. In 
case of attractive pheromone, it indicates interesting regions for 
navigation. The attractive pheromone is deposited in two ways. 
The first way is analogous to the case of collision, but the 10 
points of the trajectory marked are the ones just before a target 
capture. The second way is more sophisticated and depends on the 
“intact trajectories”. 

The intact trajectories are the routes executed by robots between 
two consecutive target captures. Consecutive here means that no 
events of collision or monotony happen between the two captures. 
Thus, every time a robot captures any two targets consecutively, 
all points of the referred trajectory are marked with attractive 
pheromone. In brief words, intact trajectories become attractive 
pheromone trails, having one target as starting point and another 
as ending point. Furthermore, each intact trajectory has a length 
that represents the distance traveled by the robot to go from the 
first target to the second one. Every length is computed to get the 
mean length between targets and consequently the mean distance 
covered between target captures. The mean distance has a general 
unit called d.u. (distance unit). 

The artificial pheromone deposited has type and concentration as 
attributes. So, each position of the environment is associated with 
the type and the concentration of pheromone. The concentration is 
an integer value and is incremented by one each time the 
respective position receives a pheromone deposit of the same type 
previously released. The maximum concentration of pheromone is 
fixed and denoted σmax. If a deposit of repulsive pheromone 
occurs over an attractive one, the latter is ignored and the 
repulsive predominates. On the contrary, nothing changes. 
Because the collision event is more critical and undesirable, the 
repulsive marks will always prevail. 

The whole pheromone trail mechanism affects simply just one 
component of the robots’ navigation system: how the rule that 
will actuate at each iteration is selected. Such decision is taken in 
the competition module (Section 3.1.2) by means of Equation (1). 
The pheromone trails provide information for determining the 
values of CR and CA, favoring rules more suitable to avoid 
obstacles or capture targets. In every robot movement (iteration), 
the sensor reads the type and concentration of artificial 
pheromone available at the current position. After that, it is 
possible to calculate CR and CA as follows: 












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==

==+=

==+=

otherwise;  1  and  1
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repulsive; if  1  and  
10

1

,CRCA

type,CRionconcentratCA

type,CAionconcentratCR

   
In general terms, the idea of the pheromone trail mechanism is to 
consider experiences already lived by the set of robots for 
assisting them in taking more suitable decisions when navigating. 

4. RESULTS 
The following results were obtained with the navigation system 
using the pheromone trail mechanism developed as means of 
indirect communication among several robots. The experiments to 

Consecutive Captures 1 2 3 4 5 6 7 8 >8 
Procreation Rate (%) 10 8 7 6 5 4 3 2 1 

(4) 
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be presented are organized in three stages, aiming at achieving the 
proposed objectives (obstacles avoidance, targets capturing, 
distance optimization and environment mapping) and the 
improvements provided by the implemented communication 
mechanism in collective robotics. 

All experiments were performed using a simulator implemented 
by the authors. Each simulation was repeated three times and the 
mean of the resulting values was considered. To measure the 
robots’ performance, three indices were adopted: cumulated 
number of events of collision with obstacles, capture of targets 
and monotony. Results considered satisfactory are those that 
present as many events of capture as possible and as few events of 
collision and monotony as possible.  

Although several robots navigate simultaneously across the 
environments, they are, each one, controlled by their own 
autonomous navigation system. Furthermore, the robots do not 
communicate directly. Other distinction is related to pheromone 
evaporation. Due to the reduced size of the environment, the 
small number of robots interacting, and the objective of 
environment mapping via accumulated pheromone, the 
evaporation of pheromone is not considered in this work. 

Every environment set up is closed and has obstacles (black 
rectangles), targets (circles) and robots (triangles) disposed 
arbitrarily. Robots must capture the targets in a fixed and serial 
sequence. When robots complete the sequence of captures, it is 
restarted. Thus, it is important to make clear that the robots do not 
compete for targets, they just have to capture them in a pre-
established sequence. No target is removed or inserted during 
simulation. Moreover, the maximum concentration of pheromone 
(σmax) is set to 40.  

The first stage consists in comparing the robots mean 
performance with and without the pheromone trail mechanism. 
The environment employed is shown in Figure 4 and is composed 
of three central obstacles and six targets that should be captured in 
a fixed and cyclical sequence (1 to 6). A hundred and fifty 
thousand iterations was the duration of each one of the six 
experiments done and there were four autonomous robots 
(initially disposed arbitrarily) navigating through the 
environments. It is important to highlight that the robots do not 
have significant initial knowledge, so that a priori behaviors or 
navigation strategies have not been incorporated. Consequently, 
they are expected to suffer numerous events of collision with 
obstacles and monotony until they become able to navigate 
satisfactorily. Such evolution of basic behaviors is best presented 
and explored in Cazangi and Figueiredo [7]. 

 
Figure 4. Initial environment and target sequence.  

 

 

Figure 5. Concentration of pheromone trails after simulation. 
 
Figure 5 depicts the accumulated concentration of pheromone 
deposited in the environment by the four robots. As already 
explained, there are two kinds of pheromones: attractive (blue 
tones) and repulsive (red tones, usually located close to 
obstacles). In both cases, stronger trails or regions mean larger 
concentrations; otherwise lighter ones indicate smaller 
concentrations. Trails from target 2 to 3, from 3 to 4 and from 4 to 
5 are more concentrated, indicating that those paths were the most 
visited. It is also interesting to notice the environment mapping 
built by the robots through deposit of pheromone. 

Table 2 contains the results of the experiments at the first stage. 
Note that the presence of pheromone trail improved the robots’ 
performance in all criteria, when compared with the absence of a 
pheromone trail mechanism. In average, the amount of collision 
events was reduced by 6.44%, and of monotony events by 6.38%. 
The best remark was the growth of almost 36% in capture of 
targets. 

Table 2. Statistics of the first set of experiments. 

Pheromone 
Trail Collision  Capture  Monotony 

off 509 446 261 
off 518 489 241 
off 587 548 234 

Mean 538 494.33 245.33 
on 487 580 250 
on 578 770 210 
on 445 666 229 

Mean 503,33 672 229,66 
Increment (%) -6.44 +35.94 -6.38 

 
Next, the second stage focuses on evaluating the robots’ 
capability of minimizing distances. To analyze this property, a 
closed environment was designed, shown in Figure 6(a), with a 
central obstacle between two targets which should be captured 
alternately. The simulations lasted 40 thousand iterations and 
there were five robots navigating. 

 
Figure 6. Organization of the environments (a) and (b). 
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Table 3. Statistics of the second set of experiments. 

Pheromone 
Trail Collision Capture  Monotony Intact 

Trails 
Mean 

Distance
off 139 156 105 30 617.31
off 99 109 81 51 640.86
off 118 140 85 72 548.72

Mean 118.67 135.00 90.33 51 602.29
on 70 234 58 163 494.53
on 128 183 87 103 404.29
on 148 293 49 205 344.58

Mean 115.33 236.67 64.67 157 414.46
Increment (%) −2.81 +75.31 −28.40 +307.84 −31.18

 

Table 3 presents the results of the six simulations and the 
improvements provided by the pheromone trail mechanism. The 
number of collision and monotony events were reduced by 2.81% 
and by 28.40%, respectively. The capture events were 75.31% 
higher, and the number of target captures accomplished by means 
of intact trajectories was triplicated. Finally, the mean distance of 
intact trails (between the two targets) decreased 31.18%. This 
result confirms the role of the developed mechanism to minimize 
the navigated extension from one target to another. 

The mean distance variation during the simulation is presented in 
Figure 7 for two chosen cases (from Table 3): the third off 
(square) and the second on (circle). The circle marked curve ( ) 
shows the mean distance converging more quickly than the 
square marked one ( ) and toward smaller values. Furthermore, 
the frequency of occurrence of intact trails (marked with circles 
and squares in the curves) is higher when the pheromone 
mechanism is active. But, when it is inactive, as represented by 
the square marked curve, the interval between occurrences is less 
regular. It is interesting to note that the first captures may occur 
casually resulting in abrupt variation of mean distance, as seen in 
the initial 15 thousand iterations. 

The third stage addresses the optimization aspect, where some 
experiments were prepared aiming at verifying the system 
efficiency in searching for optimum values. That is, in addition to 
navigating attending the objectives of capturing targets and 
avoiding obstacles, the robots will also be optimizing trajectories 
and minimizing distances. 

 

Figure 7. Curves of mean distance versus iterations. 

A closed environment was designed with four targets (sequence 1 
to 4), each one disposed 200 d.u. far from its precedent target. As 
illustrated in Figure 6(b), the environment does not contain 
obstacles in a way that the best trajectory between two targets is 

always a straight line of length equal to 200 d.u. Moreover, there 
are three robots and the simulations lasted 50 thousand iterations. 

The optimum length of the complete sequence (from target 1 to 4) 
measures 800 d.u., being that the optimum average distance 
between targets is 200 d.u. Looking at Table 4, where the results 
are placed, it can be noticed that a value very close to the 
optimum (201.91) was achieved when the pheromone trail 
mechanism is active. Although the average performance is not so 
close to the optimum, the pheromone trail mechanism can be 
considered relevant to suggest shorter trajectories to be followed 
by multiple robots. 

Yet detailing the simulation case in which the minimal mean 
distance was obtained, Figure 8 presents a curve with its variation 
along 50 thousand iterations. Similar to what commonly happens 
in navigation experiments, the learning of basic behaviors (like 
obstacle avoidance and target capturing) takes place along the 
first iterations (until 24 thousand, in this case). Just after that 
period, the behaviors are well established, so the intact 
pheromone trails begin to appear and become more and more 
concentrated. As well as the concentration increases, the robots 
start to adopt shorter paths. The tendency of minimizing the 
distance traveled is clear after iteration 24 thousand, when the 
mean distance is greatly reduced and the frequency of occurrence 
of intact trails increase (accumulated circles). 

 
Figure 8. Evolution of the mean distance in the best case. 

The same experiment associated with the graphic of Figure 6(b) 
has Figure 9 as final image. It shows the pheromone trails 
concentration and the most used trajectories after 50 thousand 
iterations. In terms of mapping the environment, it is also possible 
to divide the process in two distinct phases. The first iterations are 
important mainly to mark regions with repulsive pheromone 
because most collisions occur in such phase. In the subsequent 
iterations, the role changes and it is time to mark regions mainly 
with attractive pheromone, as a consequence of a constant 
production of intact pheromone trails. 

 
Figure 9. Concentration of pheromone trails after simulation. 
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Table 4. Statistics of the third set of experiments. 

Pheromone 
Trail Collision Capture  Monotony Intact 

Trails 
Mean 

Distance
off 39 249 57 204 291.23
off 45 233 84 184 231.46
off 21 258 82 239 235 

Mean 35 246.67 74.33 209 252.56
on 25 468 30 444 234.52
on 40 344 55 305 220.84
on 40 425 37 396 201.91

Mean 35 412.33 40.67 381.67 219.09
Increment (%) 0.0  +67.15  −45.28 +82.61 −13.25 

Examining the remaining results of Table 4, once more the 
developed mechanism provided good improvements over the 
absence of pheromone, except in number of collision events. The 
mean distance of the on-cases was 219.09 d.u., difference of only 
19 d.u. from the expected value (200). It is important to 
emphasize that the navigation system has no rewards or specific 
artifices toward the minimization of distances. This kind of 
artifices may further improve the results. 

5. CONCLUSIONS 
In this work a mechanism for collective robot navigation with 
indirect communication was proposed, inspired by pheromone 
trails in ant systems. Each robot was controlled by the 
autonomous navigation system (ANS) presented in Cazangi and 
Figueiredo [7] and Cazangi et al. [8], extended with an additional 
sensor for detecting the kind and level of pheromone present at 
the current location of the robot, and also an additional actuator to 
deposit pheromone following very simple rules. The robots have 
no initial knowledge and learning is accomplished by means of a 
classifier system composed of if-then rules with a particular 
configuration for the antecedent and consequent parts. 

Beyond the aim of extending and validating the previously 
developed ANS in collective scenarios, the indirect mechanism 
for communication promotes an overall better performance, 
optimization of trajectories, and environment mapping. 

Even though not every aspect employed in simulation is actually 
bio-inspired, the extensions and additional modules prove to be 
helpful in navigation tasks with multiple objectives and 
incremental learning. Partial bio-inspirations are acceptable 
considering that many algorithms or systems developed based on 
biological phenomena are so improved and extended that the 
original analogy becomes just an inspiration [9]. 

Three sets of experiments were performed. When comparing the 
ANS with and without the use of pheromone trails, all 
experiments guide to improvements caused by the presence of 
pheromone. Mainly in terms of target capturing, the gain was very 
significant. 

Related to trajectory optimization, the results indicate that the 
system is able to reduce the distances traveled between targets. 
Although it can be considered just as a side effect, the system 
capability of minimizing distances is promising, especially 
regarding that the ANS was not designed toward this end. The 
same can be said about the environment mapping obtained 
through accumulation of pheromones (see Figures 5 and 9). 

The future perspectives are associated with preparing the ANS for 
application in real optimization problems and also in clustering. 
Other collective tasks will be considered (e.g., box-pushing) and 
co-evolutionary scenarios can also be envisaged. 
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